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ABSTRACT

A sufficient condition for eliminating the on-axis backscattering of an anisotropic impedance
coated shell of revolution has been deduced. The outside and inside normalized surface
impedances Z* and Z~ with which this sufficient condition can be satisfied have all been found.
One exceptional situation is when the impedance matrices are equal and skew-symmetric with
their determinants equal to ~1. All other cases require that the two matrices be symmetric, their
determinants be unity, and the determinant of their difference be zero. The shell under
consideration can be a closed one. For such a body of revolution oaly the conditions on Z* need
to apply, i.e., Z" must be either symmetric or skew-symmetric, with det{Z*] = +1. This is an
extension of Weston’s result to anisotropically coated bodies. Results of this work make available
a wide class of models which must have zero on-axis backscattering cross section. All general
purpose numerical codes for computing the scattering cross sections of anisotropic impedance
coated objects should be checked for their accuracy against a selected group of such models.
Such comparisons should provide indications of an error bound of the particular algorithm.
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I. INTRODUCTION

The electromagnetic scattering from an arbitrarily shaped shell of revolution has been
investigated. An example of the geometry 1s shown in Fig. 1. The surface is parameterized in
the cylindrical coordinate by (p,(s), o, z(s)) with 0 < s < [/and 0 < ¢ < 27, where
the z-axis 1s the axis of rotation and s is the arc length parameter of the generating curve (Fig.
2). Henceforth the subscript “g” will denote the described on the generating curve. Also
shown in Fig. 2 are the unit tangent 7 and the unit normal 5+ = ¢ x 7 to the curve. The
parameterization of the generating curve is chosen so that 7 * is the outward normal of the
outer surface of the shell. The angle 0 o> measured from the positive 7 axis to 7, unlike the
polar angle in a spherical coordinate system, can assume negative values or positive values
greater than 7.

The inner and outer surfaces of the perfectly conducting shell are coated with
anisotropic materials which can be different. It is assumed that the thickness of the coating
and of the shell are infinitesimal. The coated surfaces are also assumed to satisfy the
impedance boundary condition (IBC). It is found that, with some special impedance matrices,
the backscattering cross section along the axis of this coated shell can be eliminated. This
finding will be presented in this report.

For convenience in both theoretical formulation and numerical computation, it is
desirable to consider £ as the electric field intensity vector divided by the intrinsic impedance n=y/ple
of the isotropic, homogeneous medium within which the shell is located. Therefore, electric

field intensity 7 takes the unit of amperes per meter, the same as those of the magnetic field




Figure 1. An arbitrarily shaped shell of revolution.

!

s =0

Figure 2. The geometry and coordinates of the generating curve.
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intensity 77 and the electric and the magnetic surface current distributions. The surface

impedances, 7 * on the outside and 7 - on the inside of the shell, are also normalized with the
same factor to become dimensionless. The time dependence , -iwr will be assumed and
suppressed. These are the conventions adopted in this report.

For the remainder of this chapter, the major steps taken to prove the vanishing of on-
axis backscattering cross section are briefly sketched in Sections A through D. The sufficient
condition to eliminate this cross section is specified at the end of Sec. D. In Sec. E, the
impedances with which the on-axis backscattering can be eliminate are given. They are the
main contributions of this work. All general purpose programs [1, 2] for the numerical
computation of scattering cross sections of anisotropic impedance coated objects should be
checked for their accuracy against selected surfaces of revolution coated with impedance
matrices satisfying the conditions listed in that section. The results will provide an indication

of the error bound for the particular algorithm.

A. SCATTERED FIELD

The Stratton- Chu equations [3] give the radiation in a homogeneous and isofropic'
region outside a closed surface S in terms of the tangential components of the F and f field
intensities on S. The scattered fields j+ and 77 at a point 7 outside S which encloses the
shell are given by:

4mE() = kY < [ [EG)IGE )da,s & [ [AG)IGE-7 )da,
S S

-iv [ [AxH(F 1oV G(F-7,)da, )
S

(9]




4Tl G) = IV % [ AGIGE-7)da,~ K [ [EC)IGE-F, )da,
s N

O [ A L @
+ iV f [AXE(F )]V, G(F-F )da,
s
o 17T
where 7i is the unit outward normal of S, & = wy/pe, and G(7-7 )=———— Note that the

V—r
o

tangential components of 7 and 7 are the equivalent magnetic and electric surface current
distributions on S (rotated by 90°.)

In egs. (1) and (2), the surface S can be shrunk toward the shell. We denote the outer
surface of the shell as §*, and the inner surface of the shell as § . Henceforth the
superscripts “+” and “-” will denote the described values on §* and § - respectively. The

total (incident and scattered) equivalent electric currents g on §* and g~ on §- are:

K =n"xH
3)

K =nxH =-a"xH
where 7 * and 7 - are the unit outward normals on § - and § - respectively. 4 and g are
the total magnetic field intensities. Because the thickness of the shell is considered
infinitesimal, 4 * = -7~ at any point of the shell.

Similarly, the equivalent magnetic currents j* and j - are:

+

I"=E xs"
_ 4)
L= E xp-

E ™ x(-A")

Define g(¢ s ) as the sum of the outside and inside total electric surface currents, and
0’7o

similarly f(¢ s ) as the sum of the outside and inside total magnetic surface currents:
o’ 0




K=K +K (5)

=0 +1I (6)

Since the thickness of the coating and of the shell are assumed to be infinitesimal, the
contribution from §_ and §, (Fig. 3) to the integrals must vanish by the edge condition [5]

as the distance of S to the shell becomes zero. Egs. (1) and (2) are reduced to:

Figure 3. Shrink S to the surface of the shell.



4'1'L'E SC(,;) == kV x fzfzn Z_:(cl)a’SO)G(F—Fo)padsodcbo
GJ0
.k2 r 2 ]Z G = = dg d
S [T RGG7 o o, g
=iV [T R(b,s,) VG )p ds db,
0vo

and

47[:]? Sc(f) = kV x fzfzn ]Z(d)oaso) G(F_Fo)podsodd)o
0J0
S0 prlp2m =z
+ Zk foj;) L(q')o’so) G(r—ro)p0d50d¢o (8)
SV [T D, V.G ) ds b,
0J0

Note that the scattered fields are determined completely by the sum currents on the shell.
In the far-field region, the scattered field f “(7) can be expressed in the spherical

coordinate system as:

. ikr x n .
E“(F) ~ ikS— f sto f ? dd, p,[ O[K sinf cosBeos(d-,)+K, cosOsin(dp-¢,)
4nrdo 0 e
-K tcongsin@ +Lycos(d-¢,)-L tsin@gsin(d) -¢,)]
+d[K 5C0s(P-,) K sinb sin(dp-¢,) )
=L sinB cosBcos(dp-P,)+L ,c0s0,sin®

. -1{kz cos® +kp sinBcos(¢ 8]
~L,cosBsin(dp-,)] Je

where the subscripts ¢ and # denote the tangential components of the surface currents in the $
and 7 directions on the surface of the shell respectively. Because of the rotational symmetry
of the shell, the Fourier expansion can be utilized to solve the ¢ -dependence of this problem.

Define the Fourier series component /. (s) of a function f (¢,s) by:




F@s) = X e™ 5 ()

n=-o0

thenas 6 ~ 0, eq. (9) is simplified and transformed to:

- sc ikr - . . ; . A e
EX(F) =k %— foldso p.e ]Q°{[(K¢71+1L¢,1)+z K, +iL,,)sin6 J(£+i))

(K, -iL, ) ~i(K,_, ~iL,_,)sind )(£-ip)}

The backscattering cross section is given by:

~ SC|2
o, = lim 477’ | — |
oo {Emclg

(10)

(11)

(12)

For an incident plane wave directed along the axis of the shell, with | Einc‘ normalized to

unity, 0, becomes:

2 ! . . . . A
0, = — | fola’so p.e IQ"{[(KM+ZL¢’1)+Z(Kt’1+1L[,1)sm6g](x+zy)

(K ~iLy ) -i(K, =i, )sinf J(E-ip)} [*

B. IMPEDANCE BOUNDARY CONDITION

(13)

The impedance boundary condition links the tangential components of the total

electric field to those of the total magnetic field on a surface through its surface impedance

which is a function of the electromagnetic properties of the material, i.e.,




A= x (5 x i) = 77 (A x B (14)

where 7~ and 7 - are the normalized surface on - and § - respectively. Equivalently,

(15)

For anisotropic materials, it is more convenient to utilize matrix notations. In eq. (15),
the vectors g* and j* can be considered as two-element column vectors, with each of the
¢- component designated as element 1 and the 7 - component as element 2. 7+ and 7 -are
then two-by-two matrices. The cross product of the unit vector 7 * with such a two-element
column vector can be represented with the following matrix multiplication:

ATx L% = VI (16)
0 -1 . .
Lo .Notethat '* = -V and VV* = -].
4

In terms of the matrix ¥, the impedance boundary condition, eq. (15), can be written

where V' =

as:

3
+

(17)

N
i
0

|
~I
I~

Since the scattered field is determined completely by the sum currents, it is desirable
to write the impedance boundary condition as one which providés the difference currents in

terms of the sum currents. Define:




(Z°+Z7) (18)

o | =

and

>
1]

—;(Z* -Z7) (19)

then, assuming that Z is invertible, eq. (17) can be transformed into the following two

equations:

—

K" -K

=ZWIL-Z'AK (20)

['-L = -V[Z-AZ7A1K - VAZ VL (21)

C. EQUATIONS FOR SCATTERING CURRENTS
From eq. (3), using matrix notation and noting that 5 x F = 5 x ﬁm on the

surface of the shell, one can deduce that:

K -K =VH, -(-VH,
| ()
= VH,, +H.)+ VH, +H,)=V@H, +H, +2H.)
therefore,
B+ HS + 2™ = -V (K -K) (23)
Similarly,




EX +EX «2E" =V (L -1 (24)

The Fourier coefficients of the tangential components of the scattered fields
approaching the outer and inner surfaces of the shell in egs. (23) and (24) can be obtained

from eqgs. (7) and (8) and written as:

EX(s) + EX () = -M, R (s) + N, L (s) (25)
ﬁ;;;(s) + ﬁ;;’n(s) = -N,K(s) - M, L(s) (26)

The elements of the two-by-two matrices M, and N, are integrodifferential operators on the
elements of the column vectors g and j . They are derived and given later in egs. (85) and
(86).

Combining these with eqs (20) and (21):

N1 (z-azoia Azl IR Er,
+ =2 » 27)
N M vzia - vzl | | L 7

where unlike the products of M, N, with g , ", the matrices involving the impedances are
n n )
constants and the product with g , 7~ are usual matrix multiplications. Given the incident
n n
wave, this is a linear integral equation of the second kind for the unknown currents K.I -
n n

It is assumed that unique solutions to eq. (27) exist for all 7.

10




D. ZERO ON-AXIS BACKSCATTERING CONDITION
Because of the rotational symmetry, a wave incident along the axis of the shell (the
z-axis) can be assumed to be linearly polarized in the y-direction without loss of generality.

Let the fields on the surface of the shell be:

E"™(b,s) =y e ¥ = [ cosdpd + sind (sinb 7 + cosB A" ] e
N N A ) P
H™(d,s) =% e ™ = [-singd + cosd (sinb7 + cosb i) e o)

where the superscript “inc” denotes the incident wave.

The Fourier coefficients of the tangential components of the incident fields are:

‘ o
E¢Jl = [671—1 * 6n+1]
) 2
. e—ikzg
E) =156, -8 _1-— sin6),
) o (29)
Hinc S -8 e ¢
bn T [ n-1 n+1] 2
. e_ikzg
H =18, +38 ] sinf

Note that only the p = +] terms in eq. (29) are nonzero. Therefore, only the cases
7 = =] have to be considered.

Since

E—:mc _ e —ikzg v (30)

1
tanx1 E

The incident fields satisfy the relation:

11




0 -i/ Et:LC:tl
1= = 0
i 0 iy inc

tan,£]
On the other hand,
O _I[ n —Nn] n _Nn
il 0[N, M| N M,

Z-AZ7'A AZYY
VZA -VZTW

£1 _Nil

Nj;l Mil

0 -il +1 _Nil
=1=

i 0 N, M,

} Et;l;l]

 inc i

tan1 |

0 -i/
i 0

Therefore, if
il 0

0 il
1 =

i o]
Z-AZ'A AZWV
VZIA -z

Z-AZ7'A AZTYV
VZTA -VZTW

+

-+

The existence and uniqueness of the solution to eq. (27) implies that

also commutes with [O _’J} then

(1)

(32)

(33)

34




lLe., K

- lZ’iI = (- Fromeq. (13), 0= 0. There will be no backscattering.

E. IMPEDANCE MATRICES

It has been deduced that a sufficient condition to eliminate on-axis backscattering is:

0 -il||Z-AZ'A AZ'V Z-AZ'A AZT'WV |0 -il (35)
0| vzia  -vzow] | vzoa -vzewllil o
which 1s equivalent to:
VZIA=-AZ7Y (36)
and
Z+VZW=AZ'A 37)
To satisfy these two conditions, either
0 =i
Z" =27 = (38)
71 0

when 7+ and 7~ are skew-symmetric, or, in the case when Z* and 7 - are symmetric,

(39)

1]
—

detZ® = detZ”

(40

It
O

det(Z* - Z°)




Note that when the shell is a closed surface, the impedance boundary condition
separates the interior volume from the solution in the exterior. Only the conditions on 7 will

apply to the exterior problem. Therefore, for an anisotropic impedance coated body of

0 il}
or

revolution, the on-axis backscattering cross section vanishes either Z* = | 0
+1

detZ ™ = 1 with a symmetric 7 *.

14




II. SCATTERING OF A COATED SHELL OF REVOLUTION

A. RADIATION FROM EQUIVALENT CURRENTS
The geometry and coordinate system for an arbitrarily shaped shell of revolution are

shown in Figures 1 and 2. In the cylindrical coordinates (p, ¢, z), the shell is described by

p = pg(s), z= zg(s) with O<s</ where s is the arc length parameter of the generating curve.
Since both p and z are functions of s, the surface of the shell is parameterized in the
coordinates ¢ and s. The transformations of vectors between the cylindrical coordinates and
the surface coordinates (¢, s) are given in Appendix A.

The Stratton-Chu equations give the radiation in a homogeneous and isotropic region
outside a closed surface in terms of the 7 and 77 field intensities on that surface. Using the
conventions adopted in this report, the radiated fields 7+ and /¢ at a point 7 outside S

which encloses the shell of revolution can be written as [4]:

AnEG) = k? [ RHC)GEF)da, + k [ GXEF)) * V67 )da,
s S

) (41)
+k [ (2 BF)) V,GFF)da, o
S

anH () = - k* [ GREG )G )da, + k [ @xF) * V,GG-7)da,
S S

. (42)
“ k[ G HE) VG0 )da,

e N
, and 7 is the outward normal of S.

where k = wy/pe and G(r-r) =

15




Egs. (41) and (42) can be converted into ones involving integrals of tangential

components of the fields only. Consider the last term in eq. (41):

kf(ﬁoE)VOGdao —kf(ﬁ»E)VGdao
S S
-k st(ﬁ»E)G da,

i V[ (Y, x H)G da,
S

(43)

—inﬁe[VOX(ﬁG)—(VOGXﬁ)]daO
S

~i vaoo[vox(ﬁ Gldv, - z’Vf (A x HyeV G da,
S S

—in(ﬁ x H)y o V.G da,
S

Note that VG(F-7,) = -V G(7-7,). The second term in eq. (41) can be written as:

f(ﬁXE(FO)) * V,G(FF,) da, =V x [ (AXE(F)) G(F-F,) da, (44)
S S

Consequently, eq. (41) is converted to:

ARE“G) = kY < [ [0 x BG)IGE7)da,e i [ 1 x HG)IGET)da,
45)

-iV f [A x HF)] o V. G(F-F )da,
s
From the duality principle [6], eq. (42) can be obtained from eq. (41) by replacing 7 with 7
and g with _ f. The corresponding expression to eq. (45) for the radiated magnetic field can
be obtained similarly:

A ) = KV [[ﬁ < HF )G(F-F )da ~ ik [ [7 x E(F)G(F-7 )da,
S S

+ iV f [ x EF)] e V. G(F-F,)da, (46)
S

16




In eqgs. (45) and (46), the surface S consisting of the four non-overlapping surfaces
S,. S, 8,,and §, can be shrunk to the surface of the shell so that S -8 and S, -8
(Fig. 3). Since the thickness of the coating and of the shell are assumed to be infinitesimal, the
edge conditions [5] guarantee that the contributions to the integrals from the bottom surface S
and the top surface S, must vanish in this limit (Appendix B). Therefore, the integrals in egs.
(45) and (46) need to be carried out over §* and - only.

The total (incident and scattered) equivalent electric currents g ~on §* and g~ on §-

are defined to be:

K" =ha"xH
47
K = A xH =-Aa"xH"
and the equivalent magnetic currents 77on S and ;- on §- are defined as:
LT =E xA°
(48)

With each integral in egs. (45) and (46) written as a sum of integrals over the two surface §*
and §°, we can substitute the surface currents of egs. (47) and (48) for the fields.

Furthermore, define the sum electric current as:

K=K +K (49)

and the sum magnetic current as:

17




L=L +1L" (50)

eqs. (45) and (46) are reduced to:

4TE “(F) = - kV x f lf " U(b,s,) GF-F) pds,dd,
0J0
. lp2n w3
vk [ R,5) GO pds o, (51)
- ZV flfzn [2((1)0,50) ® VOG(F—FO) podgodd)o
0v0

4TH“(F) = kV x f Zf " R(d,s,) GF-7,) p,ds,do,
0vo
'k2 !l pr2n L" G 7y ds d
+ 7 LL (d)ozso) (7" ro) po SO d)O (52)
=iV ¥ LG,s,) @ V,GOF) pds,dd
0Jo 0o 0 or oo to

where 7, = (p,, ¢,,2,) and p, = p(s), z, = z,(s,).

B. THE FAR FIELD

In the far-field, the spherical coordinate system (r, 6, &) is more convenient. To the

.1
lowest order in —:
12

L e [ hz,cos0+ kp sinBeos(d-¢,) ]
G (F-F) = - ¢ 9

and

18




- VGFF)=ir?PG(F-F) (54)

where cos® = Z and sin® = 2

~. Eq. (51) simplifies to:
¥ r

ikr .
E*(Fy=iks— f ds, f d,p,[B[K sinb cosBeos(§-,) +K, cosBsin(d-,)
4mtrto 0 e
-K tcosﬂgsin@ +Lycos(d-,) —Lrsinegsin((i) -¢_)]

A

+¢[K cos(-¢,)-K sind sin(Pp-¢,) (55)
=L sinB cosOcos(d-¢,)+L cos6 sin6

. -ifkz jcos0 +kp sinBcos(d - )]
-L (bcosﬁ sin(p-,)] le

The Fourier expansion of eq. (55) is:

o skr -ikz_cos! A . . .
ES(P) = ikﬁ—(“i)nf ds_p e (B [iJ (kp sind)(cosOsind K, "Ly,
§ 2r o °°° ° gotn Tn
nsin®
o, (kp, 5820 s sinbK,

kp _sin® kp sin® 2 (56)
+Q[i] (kp sind)(K, ,~cosBsin6 L, )
nsing ncos@

kp sin® " ) kp_sin®

+Jn(kposin6)(congsinBLm - Ly )1}

where J (x) is the Bessel function of the first kind of order n, j/ (x) 1s the derivative of J (x)

with respect to x.

For the scattered field in the 6 = 0 direction, eq. (55) is further simplified and

transformed to:

19




~ o ikr ik . . A . A A
E*(F) =k _3_; foldspoe Lo{[(K ’1+ZL¢J)+1(K[J+1Lt71)sm6g](x+ly)

(57)
-[&, ~iL, )=k, —iLI,_I)sint](f—z'ﬁ)}
The backscattering cross section is given by:
0, = lim 47r? | :E ° (58)
oo |E 1ncl2

For an incident plane wave directed along axis of the shell with | E incl normalized to unity, g 5

becomes:

k2 -i . 4 . . o n
0y = | foldspoe kz"{[(Kd)’l+1L¢,1)+1(Kr’1+1Lt,1)s1n6g](x+zy)

~[(Ky -y -iL, ) -i(K, _,~iL, )sin® JE-i)} [

(39)

20




. ZERO ON-AXIS BACKSCATTERING CROSS SECTION

A.  INTEGRODIFFERENTIAL EQUATIONS FOR THE SURFACE CURRENTS

The impedance boundary condition links the tangential components of the total
electric field [ to the tangential components of the total magnetic field Fi on a surface
through its surface impedance, which is a function of the electromagnetic properties of the

material of the surface. This condition is:

x i%) = Z* (A* x H") (60)

where F* _ gse= | pineand = - fjset , fjine* arethetotal £ and g fieldsand 7+ and
Z - are the normalized surface impedances on §* and §- respectively. Since only the
tangential components of F* and = are involved in eq. (60), we shall use 7=, g,

tan tan

E e, fjine= to denote the tangential components of the scattered and incident fields on the
tan tan

surfaces §* and §-.

In terms of surface electric and magnetic current distributions eq. (60) becomes:

>t

+A"x L[ =27*K (61)

For anisotropic materials, it is more convenient to utilize matrix notations. In eq. (61) the
vectors g* and j'* can be considered as two-element column vectors, with each of the ¢-
component designated as element 1 and the ~-component as element 2. 7+ and 7 - are then
two-by-two matrices.

The cross product of the unit outward normal 7 * with such a two-element column



vector, which is composed of ¢- and 7 -components, can be represented by the following

matrix multiplication:
ATx [T = VI® (62)

0 -1

. VT = -V and V? = -I. Hence, in terms of the matrix V, the

where V =

2

impedance boundary condition, eq. (61), can be written as:

(63)

It should be noted that g* - ;= « F*and j=* : E® x p= involves s and g7+ which
can be computed from g - g* , g-and [ - j* , j viaegs. (51) and (52). Since the
difference currents g* _ g~ and j* _ j - can also be obtained from egs. (51) and (52),

the impedance boundary condition, eq. (63), if written as a relation between the sum and

difference currents, becomes a set of integrodifferential equations for the sum currents. Since

Z K" = %Z*[[&+(J€*—1€)] (64)
7R - %Z‘[IZ—(]Z_— £ 65)

Z K+ & -K)] (66)

22



vioo- —%Z*[E—a?—f\?“)]

Define Z and A as:

A==(@2Z -2

1
2

(67)

(68)

(69)

By subtracting eq. (67) from eq. (66) and substituting Z and A in the result, we have

VL -L)Y=ZK+AK -K)

By adding the two equations together, we have

Assume that Z ! exists, we obtain:

K" -K =zWL-2z"'K
Substituting eq. (72) this into eq. (71), we have:
L"-L =-V[Z-AZAK -VAZWE

Since

VL = A*x(E"xa%) = B = (Ege +Ep)

N
W

(70)

(71)

(72)

(73)

(74)




and

+VKE = A% x ﬁiX}?I) = - — _(H-%‘i 5 inct: (75)

Hey )

Eqgs. (72) and (73) can be written, with the understanding that Finer o E ine- _ o Fme and
tan “~ tan

ﬁmc+ +ﬁ1’nc— - 2ﬁinc’ as:
tan

tan tan
ES +ES +2EM =[Z7 -AZ7AIK + AZW L (76)
HY +H. +208" =VZ'AK-VZVL (77)

As 7 approaches §* from outside S, the tangential components of E ) and f7 “(7)

are derived in Appendix C as given by egs. (51) and (52). They are:

Ey™(4.9)= 43 B

jf f“d 5,4P,, (5 MK cos(d~,) K sin(p - )sind (s )| G(F-7,)

- 4@@%[[2%1 (I)[K——G(F F)+p(s)K G(f’i’)]

27n
alr asf f ds do P, (s, )[L sm(d) ) )cose (s) 78)

+L cos($- d)o)cosﬂg(s)sineg(so) -L rsin(ﬂg(s)cos@g(so)] G(7-7 )

s JOR

4 an =

klf s (s L cos(§ - sind), (5)sind s,
S 0 ) ° O

*+L 0030 (s)cosO (s,) +Lsin(dp-,) sin0 (s)]G(F-7)
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E*$s) =1-E
- Z{ fo fo s dd,p (5 K sin(§ -, )sind (s)

+K cos(p-,)sinb g(s)sin@g(so) +K co seg( s)cosB(s )JG(F-7.)

47“%[[“ 5,40, | KTG(F )05 )K= GF-7)]

0

2n
: 4ﬂpg(S) _67!)_[0 fo ds A} p (s, )[Lysin($p -, )cosO (s)

= L,sin6 (s)cos6 (s,) +L cos(d-,) cosB (s)sind (s )IG(F-7,)

(79)

_k

4T

cosO,(s) .

pg(s) on|gs

- Lsin(p-¢,) sin@g(so)]G(F -7 )

[[7ds,d0,p,0s,) Ly cos(-0,)

where i
on

Si

respectively from outside of S. It is evaluated as a limiting value in this report and should not

be confused with the Fourier index ». Similarly, we have:

H(;“(q),s)_ f f T ds AP (s )Lycos(d-b,)-Lsin(b-b,)sind (s )JGF-F)
ff“d s, dd,[L, —q)—G(f )+ P,( )L — as G(F-7)]

o

i 4np (s) o

' f f"“ds ddp (s,) [Ky(D,.5,) sin(d-d,)cosd (s)

(80)
+K,cos(p-P,)cosd ($)sind (5K ,((l)o,so)sinag(s)cosﬁg(so)]G(F 7))

r
k d
+ [—
41 K (S) an

l{ ! f ds dd p (s K cos(-,)sind (s)sind (s,)
5= 0 70 N -

+K tcoseg(s)cosf)g(so) +K sin($p-o,) sinGg(s)]G(f’ 7))
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H05) = 5[ [ (5 UL sin(6 -, )sind (9
+L cos(Pp —(])O)sineg(s)sin@g(so) +L tcosﬂg(s)cos@(so)] G(7-7)

= asff” AP, L, —CFG(F 7) e, )L G(f’—*)]

0

m 5% [ s i (5, )IK sinh -0 )eos,(5) (81)

= KsinB,(s) cost (s,) +K cos(Pp-d,) cosb (s) sinb (s, ) ]1G(7-7,)

k

cosB (s) i
g™ . 9
pls)  on

- Ksin(¢ - ¢,)sin0 (s )IG(F-7)

[[Tds ddp fs,) K, cos(@-b,)
070 ©

S:E

As 7 approaches S " and S, p~p_(s) and z-z (), the Fourier expansions of egs. (78) and

(79) are:

2

Egn(s) = [ ds] ——pa<s )G, .1+G,) - = G,1 K,,

P,(5)
+ ; f Py (s) smB (s, )G, .-G )+ p?s)a% G,1K,
_ lk 9 = [ #.0,5) c0s0,)(G,., -G, L,
_ Iz [Kg(s) - f ds p(s,) sinb (s) (G,.,-G, ) L,,
k . (82)

+_—f ds p (s, )[smﬁ (s)c0s8 (s,)G,

S cosﬂ (5) sin@g(so)(GnT O, DIL,,

k 3|
_E[Kg(S)—a— )

Ore

l[ ds,p,(s,)[c0s0,(s)cosh (s,) G,

1. .
+ 5 sm@g(s) sm@g(so) G, +G . DIL,,
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2 ;
ESs) = -22 f s G, W_k_ f‘dgopo(so)sineg(s)(c;m—Gn_l)K N
i
] 5 a— [, 0o L5 G K
&z f ldso P,(s,) [cosB (s)cosO (s,) G,

+ —sm@ (s)sm@ (s )G, +G, D] K,

cos 6 (s)
_k g + ‘ ]ldso p(s,) (G, + G, ) L,, (83)
XQ) |0
kncosO (s) .,
) —Z@@g)_ fodso pg(so) (erl B Gn_l) Lq,,n
0, 9 l
% [cos6, '
7 ol L® 0,)G,., - G, )L
4 Pg(s) : on SJ fo o Pe(S,) sin g(so)( n+l 1) Loy
1 .
i 2p () f o Pe(S,) [E cosB (s)sin8 (s )(G,., +G, )

-sinf (s)cosb (s,) G,1L,,

Eqgs. (80) and (81) lead to similar forms for Hdici and Ht”i by replacing ;7 with _g

and g with 7 inegs. (82) and (83). Therefore,

Egl(s) + B () = ~M, K () + N, L, (5) (84)

where the elements of the two-by-two matrices A/, and N, are integrodifferential operators

on the elements of the column vectors g , 7 defined by:
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2
nll ¢n(s) =7 lf dS[ pg(S )(Gm n«l) - pn(S) Gn] K¢,n(So)
g

d
()a

M, , K, () —n—f ds,G K, (s, )+-—f ds,p (s,)sind ()G, , =G, DK, (5,)

2
MK () == [ ldsopg(so)[-——sin@g(so)(Gml G,. =Gk, (s,)

(83)
M, ,, m(s)“l—fd p(S) G]K(S)

_ K fzdso pg(so) [ cosO (S)cosﬁ(s )G,

+-2—s1n6 (9)sind,(s,)(G,., + G, )] K, (s,)

’k 3 = [ 85.0,(6)008,()(G,., -G, )L, (s

nll ¢n( )=~

0

ik :
4{2K © -5; 2 ]fdsp<s)smeg<s)<Gm—Gn_1>f:¢,n<so>

N, L, (5)=k— f ds pa(s) [sin© (s)cosG (s,)G,

5-

b cos@ (5 sineg(so) (G, +G, DL, (5,)

0

<. on

]ZC[ZK (s)-

o i _poldsap . (5,)[cosB (s)cosO .(5,)G,

+lsm6 ,(5)sind (s )(G,.,+G, DIL, (s,) (86)

k 20056 (s) 3
2 o) ans e Ig}[ds PG, + G, )Ly (s,)

kncos@o(s)
EYoR A IR

ik|2cos0.(s) 3
NoooL (8)= ‘4—[—(‘5)— o

n71 (bn()—

0

+

- on

ikn 1 1 .
ds —cosO v G G

- sineg(s) cosO (s )G, 1L, (s,)

}f s, p (s,)sind (s )(G,., -G, )L, (s,)

<-

Similarly, we can write:




Hy(s) + Ho () = =N K (s) - M, L (s) (87)

Combining these with Fourier components of egs. (76) and (77), we obtain the

equation for the sum currents as:

-N| |z-aza az || IR, Ep
R i (88)
N M vzia vz | L e

Note that given the incident wave on the shell, this is a system of linear integrodifferential
equations of the second kind for the unknown currents g, j . It is assumed that unique
n n

solutions to eq. (88) exist for all n.

B. ZERO ON-AXIS BACKSCATTERING
Since the shell is rotationally symmetric, a wave incident along the axis of the shell
(the z-axis) can be assumed to be linearly polarized in the y-direction without loss of

generality (see Figure 2). Let the fields on the surface of the shell be:

E™($,5) =y e

~. . (89)
Hmc((l),S) =% e—zkzg

which represents a plane wave propagating in the -z direction. Because

¥ =cospP +sindppand p = sinﬁof +cosO A+ then they become
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E™(d,s) = [ cosdpd + sind (sin@gtA + 00s0,77) ] e
(90)

H mc((b, s) = [—sind)(f) + cosd (sin@gf + Cos@gﬁ ] e )

The tangential components for the incident fields on the surface of the shell are expressed as:

inc| [
E‘inc _ Ed’ _ COSd) e-ikzg
tan EincJ sind sinf_
! L S
_ 1)
inc ( .
ﬁinc _ H¢ _ _Slnq) e—ikzg
tan g cosd sin6, |
The Fourier coefficients are nonzero only for 7 =+1:
( j 1 -ikz '
T
2
inc / =i inc
E = —Esmege = - L
{ _
Hinc _ 1 —ilczg _ Hz'nc (92)
b1 = P T T g
2
HY = Ln0 e ™ - H™
> 2 g >

Because only the #» = +1 terms in the incident field are nonzero, only ]Zﬂ and Lil

can exist. Therefore, only the # = £1 components of eq. (88) have to be considered:

L Na| (z-aza Az || (R, o
* L =2 (93)
Vo My {vzoa vzl | L 7

The incident fields in eq. (93) can be written in the form
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1
E™ ¥ isinQ, ,
tan,+1 _ l & e ‘Ing (94)
73 inc 2 + 7
tan =1
sinf
which satisfies the following equation:
0 ] E’ inc E inc
-1 =1 1
[ I 0 B (95)
-y inc 77 inc
! Hmn.il thm,il
or, equivalently,
0 il { Epa
1= _ N = 0 (96)
iaool) g,

Therefore, if both sides of eq. (93) are multiplied with the factor 1 = [O —i]} } , then the
il 0
right hand side of eq. (93) is equal to zero due to eq. (96):

{1 [O “l]} +1 _Ni[‘| t'Z-AZ~1A AZ~1V E;tl
Ex +
i 0 Ny Myl vzoa vz ||
. = jnc 97)

0 —I] E + (
-241 = el

i 0 3 inc

tant1

=0

From egs. (85) and (86)
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0 _Z.[ n —Nn] 7 _an O _l]
: = . (98)
il 0[N, M,| N, M| o

Z-ANZ7'A A Z'V

Therefore, if the matrix
VZIN -VZIW

10 =il
also commutes with , eq. (97)
il 0
becomes:

o N |- 0 -if
N, M, Tl oo

The existence and uniqueness of solutions to eq. (97) implies that

Z-AZ7'A AZ7VY
VZIAN -VZWV

+

—

]{;:‘1
} =0 (99)

b~

+1

O —l] j{;l -l
1= =0 (100)
il 0 fﬂ
or, equivalently
K, il =0 (101)

Substituting this result into eq. (59), we conclude that 6, = 0 if the matrix

Z-AZ7'A AZTWY
VZIA -VZIW

0 -if
. This is a sufficient condition to eliminate on-

commutes with
il

axis backscattering.

L
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IV. IMPEDANCE MATRICES FOR ZERO ON-AXIS BACKSCATTERING

A. ELEMENTS OF Z AND A

) Z-AZ7TA AZTYY
It can be venified that the matnix

2

0 -il
commutes with if

VZIN -VZWY il 0
and only if:
VZIA=-AZW (102)
Z+V ZW =AZA (103)

where both Z and Aare 2 x 2 matrices. Under the assumption that the inverse of Z exists,
we analyze eqs. (102) and (103) as follows:

Because the determinant of the two sides of the eq. (102) has opposite signs, we get
detZ YdetA = 0. Since Z is assumed to be invertible, detA = 0.

Because of the identity:

Z—l

) |
detZ v (104) :

and, by multiplying J" to both sides of eq. (102).

ZWA=VAZW (105)

eq. (103) can be transformed to

(U9
(o)




Z = AVAZ 'V )-V 2V

_ -1 _ -1
AVAV (V Z%%) - V 27 (106)

i

1
—[1+(AV Y127
o7 AV )]

where

2
- A -A 0
(AV Y¥=AVAV= —AHAzZ A ° = 2842 (107)

0 A11A22_A:2).1 [ 0 “A,(A,-4,)

In the last equation, we utilized the fact that A, A = A,A,, because detA =0.

Substituting eq. (107) into eq. (106) we conclude that:

1L.IfZ,, # 0or Z, # 0, then

1+AL(A,-A,) = detZ (108)
1-8,(4,74y) = detZ (109)
z=2z7 (110)

2187, =2, =0,thendetZ = -Z,Z, # 0

12721
1+AL(AL-A,) = - 7] (111)
1-A,(AL-A,) = -Z) (112)

On the other hand, substituting eq. (104) into eq. (102) yields:




2y (A -8y) = (Z-24) A (113)

Zy(A -8y = (Z,-Z,) A, (114)
2By + ZpA ) = 2Z,A), = 22 A (115)

For Case 1, Z,; and Z,, are not both zero and Z is symmetric. Since Z, = Z, , eq.
(113) or (114) requires that A,, = A,,. Therefore A is also symmetric. Egs. (108) and (109)
both requires that detZ = 1. Multiply eq. (115) with either A,, or A, and replace A A

11722

with Afz’ we find either

Z,A% - 2Z,0,A,, + Z,AT, = 0 (116)

22 117712

or

Z,, A% - 2Z,A A, + 2,07, = 0 (117)

Eq. (116) can be solved for A, interms of A ,:

2 .
LAy - 22, A = Zy,*1 A
11 - 7 12 - 7 12

22 2

Multiplying A,, to both sides and replacing A, A, with A?z again result in:

A - Znti

12 7 A22
22




Hence both A, and A, can be given in terms of A, as:

A, = [ 22 2A
11 2
Zy,
(118)
Z,£i
A, = 7 A,,
22
Similarly, from eq. (117):
A Z,%1 2A
2 11
Zy /
(119)
L, FIi
Au = 7 Ay
11

Eqgs. (118) and (119) are equivalent and both include the situation A = 0. The particular one
to use is a matter of convenience, especially when either Z,, = 0 or Z,, = 0. Note that
L, =12, ==%iifZ Z, 6 = 0 because detZ = 1.

11722

ForCase2, Z,, = Z,, = Oand Z,Z, * 0.Eq. (115) requires that A,=4, =0

2

therefore A, A,, = A, A, = 0.Egs. (111) and (112) reduce to:
2122 - 2221 = -1 (120)
IfZ,, = Z,, = £1i, then there is no further requirement on A except that at least one of Ay

or A, vanishes. If Z, = -Z, =+i, then eqs. (113) and (114) requires that

A“ = A22 = 0. Hence




(121)

This is the only situation when detZ = 1.

B. Z"AND 7z~
The impedance matrices for zero on-axis backscattering specified in Sec. A above can
be stated in terms of 7 * and 7 - directly. When 7~ and 7 - are skew-symmetric, the only

possibility 1s eq. (121). When 7Z* and 7z~ are symmetric, the requirements are:

detZ™ = 1 (122)
detZ™ = 1 (123)
det(Z" -Z) =0 (124)

Eq. (124) is just detA = 0. To show that conditions (122) through (124) are
equivalent to eqs. (108) to (115), note that eqgs. (110), (113), and (114) are satisfied trivially.

Eqgs. (108), (109), (111) and (112) become:

detZ = 1 (125)

and eq. (115) becomes:
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21Dy + ZpA ) = 2Z,A, (126)

Since 7* = Z + Aand 7~ = Z - A, eqgs. (122) and (123) are:

(Zu +A11) (Zzz * A22> - (le +A12)2

1l
—

(127)

!
—

(Zu _Au) (Zzz - Azz) B (le _Alz)2 - (128)

Except for an overall factor of 2, the difference of egs. (127) and (128) is eq. (126); the sum

of these two is:

2 2
LnZy * By hyy -2 - Ay =1 (129)

which, when combined with detA = 0, isjust detZ = 1. Together with eq. (126),

le A12‘l

12 Azzj

All ZIZ

det(Z + aA) = detZ + adet + o det + c?detA

2 Zn
= detZ = 1
for any «. Therefore, with @ = =1, detZ* = detZ" = 1. Hence, with symmetric 7 and
Z -, conditions (122) to (124) specify completely the impedance matrices which eliminate on-
axis backscattering.
It should be noted that, if the shell is a closed surface, then the impedance boundary
condition closes off the inside of the shell from outside. Therefore, only detZz* = 1 is

required to eliminate on-axis backscattering. This is an extension of Weston’s work [7] to

anisotropic impedance coated body of revolution.
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V. CONCLUSIONS

A sufficient condition for eliminating the on-axis backscattering of an anisotropic
impedance coated shell of revolution has been deduced. The outside and inside normalized
surface impedances Z * and 7 - with which this sufficient condition can be satisfied have all
been found. One exceptional situation is when the impedance matrices are equal and skew-
symmetric with their determinants equal to - 1. All other cases require that the two matrices
be symmetric, their determinants be unity, and the determinant of their difference be zero.

Based on the duality of Maxwell equations, Weston [7] argued that an object coated
with a unit normalized surface impedance will have zero on-axis backscattering if the object
is invariant under a 90° rotation around its axis of symmetry. It is clear from Chapter III of
this report that the duality property is crucial in determining the sufficient condition for zero
on-axis backscattering. Results of this work therefore should not be limited to shells of
revolution only. This aspect of the problem is being completed and will be published shortly.

The shell under consideration can be a closed one. A body of revolution coated on the
outside with an anisotropic surface impedance Z * can be modeled as a shell having 7+ = 7.
Since the impedance boundary condition separates completely the exterior of the body from
its interior, only the conditions on 7 - need to apply, i.e., Z ~ must be either symmetric or
skew-symmetric, with det 7 * = +1. This is an extension of Weston's result to anisotropically
coated bodies.

It should be noted that a properly shaped and coated body can always be carefully

deformed into a shell without generating any on-axis backscattering. This procedure yields




the condition 7+ = 7 -. By beginning with a shell, we are able to relax this condition to
det(Z* - z ) = 0 for the symmetric case.

Results of this work make available a wide class of models which must have zero on-
axis backscattering cross section. All general purpose numerical codes for computing the
scattering cross sections of anisotropic impedance coated objects should be checked for their
accuracy against a selected group of such models. Such comparisons should provide

indications of an error bound of the particular algorithm.
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APPENDIX A: VECTOR CALCULUS ON A SURFACE OF REVOLUTION

Vector calculus near a surface of revolution will be presented in this appendix. In
particular, the operations of the divergence and curl on a vector field will be given explicitly.
The derivation will be based on vector calculus in the familiar cylindrical coordinates
(P, . 2).

The axis of revolution is taken to be the z- axis. In the half plane of a fixed ¢, the

generating curve of the surface is parameterized in its arc length s with the functionsz_(s) and
P (8):

7s) = z()Z + p(s)P (130)

The surface is thus parameterized in terms of (§, s). This generating curve may be closed,
open, discontinuous or self-intercept. Nevertheless, at every point in a smooth segment of the
generating curve, an outward unit normal to the “outer” surface, denoted by 7 *, can always
be defined. The parameter s can be oriented so that the tangent vector / to the generating

curve satisfies the relation:

AT = x 1 (131)
Note that:
= cosB (s)Z + sinb (s)p (132)

where cosO (s) = g;zo(s), sinf,(s) = dipa(s); 0 (s) is the angle measured from ? to 7,

41




defined to be a continuous function of s along any smooth segment of the generating curve

Since

d°F

ds?

(-sinB(s)Z + cosB (s) ) %Gg(s) = K(8)A° (133)

d . ) . ) ..
where Kg(S) = = 8_(s) is the signed curvature [8] of the generating curve: k_ is positive
s g
when 6, is increasing with s and |1/k_| is the radius of curvature of the generating curve.

In the neighborhood of the surface of revolution, the space can be described with the

orthogonal coordinates (, s, n), n = O being the surface and » > 0 going in the 7"

direction. In relation to the cylindrical coordinate system, ¢ is identical and, for # - 0, the

transformation of dz, dp into ds, dn is

ds
an

cosO, sinb_ ||,

dp

(134)

- sinf cost,

The transformation of ds, dn into dz, dp follows the same rule as the matrix is unitary. This

equation also gives, for n - 0:

on
oz

o _ e _a _ %
dz dp ds
o5 . _on_ %
ap oz as

on

For a vector field 4 = Ad) (i) + A4, [+ 4 n", A4

according to eq. (126). On the other hand,

42

r

Il

cosO

(135)

I

sinf

and A, transforms from AZ and 4 o




d os 0O on o d °

— == — + = —=cosO0 — - sin6 —
0z 0z ds 0Oz dn £ Os £ dn 136
d 3 8 _dm & _ ., 3 3 (136)
— = — — + — —=sinf — + cosO, —
dp Jp ds Ip on € Os £ on

Substitute the above into the expressions in the cylindrical coordinate system result in the

following as n - 0:

V-4 = _l_iA + -Q_Aﬂ +li(pAp)

pdb * 3z 7 pop
1,9 ) d
= _[—-—_A + —(pAI) + (_‘Ko)(pAn)]
os on °

p. o ¢ (137)
in0 0
= —LiAd) + (Sln g + i)Az + (cos g _ Ko + i)An
P, ad P, os . on
d d d 0
Vx4)y =—A4 - —A = —A4 + - —)4
(Vod)y = 4 = ot = 34 (0~ A4 (138)
(Vx4) = cos@g [i(pA ) - iA ] + sin6 [ii/l - —(?—A ]
Cop o Y b ” tpapt et
_ 1.9 9
= p_o[é;(pACb) %An] (139)
_ (COSeg + —a—)A¢ _ _}__a_An
. on ., 0P
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sind, g 3 1 9 d
V xA4) = - c[—(pA,) - —A ] +cosO [——-4 - —4
( ), - [6‘p(p o) 50 o] g[paq) : T3 o]
= 2124, - L(p4,)]
o Lapt s (140)
sin®
= __l__iAt bl ( g + i)Ad)
p, 0 P, os
As a check, the substitutions 4, = ~ 4,, A =4, p, = rsinf, 6, = 6 - g_’
6 _ 13 a

- - - — = 9 result in the correct expressions for V - 4 and
ds rdd on  or

V x 4 in the spherical coordinate system (7,0, ¢).

1
K, = - =
& ¥

2
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APPENDIX B: END-CAP CONTRIBUTIONS TO THE SCATTERED FIELDS

In eqs. (45) and (46), the surface S, consisting of the four non-overlapping surfaces
S,, §,, 8, and S, (Fig. 3), can be shrunk toward the shell. So that .S may be the surface of
constant distance & from the shell. In this appendix the fact that contributions from the top
cap §, and the bottom cap S, to the scattered fields are zero in the limit that the thickness of
the shell 1s infinitesimal will be demonstrated.

An example of the geometry of the end cap is shown in Fig. 4. Near the end at s =/,

define:

Figure 4 The geometry near an end of the shell.
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the normal direction at the end as: A, = lim 7(s),

s=1"

the tangent direction at the end as: ;z = lim 7(s),

s=1"

and the tilt angle at the end as: o = lim 6, (s), which is the angle measured from z-

s=1"

axis to fl - The cross section of the end-cap at s =/ in a half plane of fixed azimuth angle ¢
is a semi-circle with a radius 0. Note that &, a constant distance distance between S and the
shell, is a fixed, positive number. In Fig. 4, the angle ¢’ 1s measured from the axis 7,. In
terms of the angles ¢’ and «, the end cap S, can be parameterized in the cylindrical
coordinates as(p, ¢, z), where for 0<¢p/<7,

p = (D) + doos('~ )

z=z,()+8 sin(¢p’ - )
and O0<¢<2m.
Note that on the cap surface, any field vector may be decompossed to the three directional
components: ¢~ component, ¢y’-component and #-component, where 7 denotes the outward
normal to .

In eq. (45) and (46), the contributions to the scattered fields from surface integrals

over the end capJS, are:

A, = fs [A x E()IG(F-7 )da,

ﬂ (141)
= [T[7T 1< BE)GET) [o(0) + beos(d/~e)] & db dd’

0
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4, = fs [# x HF)IGF-F) da,

(142)
= [T[77 12 < HE)IGET,) [ o) + dcos(@'-)] & ddd/
¥, = fs [7 x HF)]*V,G(F-F,) da,
1 ‘ (143)
= [*[7 1 % BE)V,GT) [o,0) + Seos(d'-e)] & dp,dd
¥, = fs [ x E(F )]V ,G(F-F) da,
' (144)
= ["[7 1 < EG)1V.GO7) (o, + deos(@'-e)] & dpdd’
From the edge conditions [5], on the end cap S,,
ﬁXE:E¢<T)/—E¢/CT), where E,| < E, 3" and |Ey| < E, 87172,
and 57 - H(b(i)’_Hd)/a), where H,| < H, 812 and |H,/| < H, 5712,
where £, E. . H,, H, are positive constants. Therefore
1> Lo 41y, 11y p ,
|AXE| < 8V E!S + E]
(145)
|AxH| < 82/H]8 + H]

Note that 7 lies away from the shell. If the distance between 7 and the shell is d, « l, dcan

1 - . . . =
be choose such that 6 < 5 Oy, so that 7 always lies outside §, with |7 -7 | > —2.

2
Therefore | G(7-7))| < 2. C, and —1—W0G(i’ -F)| < C . C, for some positive
ko, k k25

[SR )
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constants C, C; and C,

Substitute these into eq. (141) and (142), and write them as:

4, | =

fonﬂ)zn dd, ad’s [Pg(l) + 8 cos(¢’ - o)] [A2 % E(f’o)] G(F-7)

Sfonfozndd)od(b/ﬁ [pg(l)+6cos((b/—a)| |E¢&)/—E¢@[ |G(F-7)|

(146)
< fo f(f"dq)odq)’a |0, (D) +Bcos(¢’ - )| |32 /E/ 87 +E§) C,
< 21 (p (D) + o) (6”2,/E1262 +E22) C,
Substituting 53 x A into eq. (142), we have:
i T 2T / / AT = - =
4] - } [ [, dd's [p,)-bcos('- )] D] GG-F,)
(147)

21? (pg(l) + 6) (6”2,/]{1262 +H22> C,

A

Similarly, for eqs. (143) and (144), we have:

27 (p (D) + 3) (61/2\/E1262 + E;) C, (148)

IA

'y

l§,| < 27 (pg(l) + 6) (61/2\/H1262 +H22) C, (149)

therefore the limits of VAR 4, |y,|, |¥,| vanishe as 6 - 0.
Hence, in the limit that the thickness of the shell is infinitesimal, the contributions of
the integrals over the top cap S, to the scattered fields are zero. Because the geometry of the

bottom cap S, is similar with the top cap S, the results for S ; are also valid for S . The
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contribution from the bottom cap S to the scattered fields is also zero. We conclude that the

integrals in eqs. (45) and (46) need to be carried out over §* and § - only.
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APPENDIX C: SCATTERED FIELDS NEAR THE SHELL

The object interested in this report is an arbitrarily shaped shell of revolution. Near
the surface of relvolution, the vector calculus derived in Appendix A should be used for the
operation of the divergence and curl on a vector field. In this appendix the scattered fields

near the surfaces §* and § - are going to be derived by using the vector calculus.

i
A~

From Appendix A, ! = ar ZcosB (s) + psind (s), and 5+ - ¢ x ¢- The
ds g g

coordinate tranformations between 7 and fo are:

b, ¢ = cos(dp-b,)
(f)o f = sin(¢p - $,) cosb (s)
$, 7" = sin(d-d,) sinf (s) |
i, ¢ = -sin(¢-¢,)sind (s,) (150)
fo f o= cos0,(s) cosO,(s,) + cos(p-,) sin@ (s) sin@g(so)
fo AT = cos($-,) cosﬁg(s) sinﬁg(so) - sinGg(s) cos@g(so)
In eq. (51), the first surface integral can be transformed as:
-k fo : [0 T db,ds,p (s) L G
_ I p2n n + Iy
= kfo fo do,ds,p,(s,) (L1, Lyd,) G
= - k[![*db,ds, 0,(5){ S~ L,sin(¢ - ¢,)sind (s,) + L, cos( ~d )] G
00 (151)

+1[L (€080, (s)cosO (s,) +L cos(p -, )sin® ($)sinB (s,)

+Lysin(¢p-,)sin® ()]G +A (L, cos($p - ,)cos 0 (s)sinB (s,)

-L,sin® g(S) cong(so) +L, sin(¢ - ¢, ) cosd g(s)] G}

the second surface integral can be transformed as:

4
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k> [ dg,ds, pfs) K G
0Jo
2 /Ozfom db,ds, p(s,) K, b, + K1) G
ik? fo 1 fo 2n do,ds,p(s,) { b [Ky cos(d ~ ) - K sin( -, )sinb (s,)] G

1l

o . (152)
+1[Kysin(d - ) sin (s) +K :c0s0,(s) cosO,(s,)
+K,cos(p-,) sinB_{s) sin® (5 )1G +AT[K, sin(d - ¢,)cosO (5)
=K, sinb (s)cosB (s,) +K,cos(d - P, ) cost,(s)sinB (s,)] G}
Since Vir = (cb o ® % +1 8%‘ +A ———) Y, the third surface integral in eq. (51) becomes:
-iv [1 fz" db,ds,p(s,) Ko VG
o i foagiyvla 1 @ 28 .a
TV Ao Ky b 1K) [d)o 0,5 30, o5, GnOJ ¢
_ 2n d d
_szf dd)dsp()[ ()achK&sG]
- - oy (153)
) p<s>a¢ff Wl ()acb 2, K‘asoGJ

. 2n 8 8
~it 2 dd_ds 2 G+k 2 G
: asfofo b "pg(s")( 0, (5) 30, 'as, )

.~ 0 plpom Ky 8 0
~in— dd ds p. (s G+K —G
8nfo Jro P05, Pyl 0)( p.(s,) 9, ‘Os, )

From eqs (138) to (140), the curl of eq. (151) is:
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- kVx fo : foz"d¢odsopg(so) LG

. k<f>{§; fo ! fo " dd,ds, Po(s,) [ Ly sin(d - d,) cosb (s) - L,sind (s)cosB (s,)
+L,cos($p -, )cosd ,(5)sinB (s )] G

+ ( K, - ain) fo : fo n d,ds,p(s,) [ L, sin($ - $,)sin6 (s) +L,cosd (s)c0s6,(s,)
+L,cos($p - ¢,)sinb (s)sin6 (s,)] G }

cosO KO 2 ‘

i {( > an] [ d,ds 0,5 )L 056~
-L,sin(¢ - $,)sind (5,)]

- o 79% j;) ! fo 2 d,ds,p (s, [L,sin(d - ) cosb,(s) - L,sinB (s)cos0 (s,)
+Lcos(p-¢,)cosb (s)sinb (s,)] G }

f f d AP (SHLySIn(P -, )sin® (s) +L cosb ($)cosO,(s,)

+L cos(d-¢,)sind (5)sinB ()]G

)fﬁ%m@&@mwm@wJﬂm@wmm%@m%

(154)

ﬁ@w¢

sin® (s) 3
( Py(s)

As 7 approaches §* from outside S, the tangential components of E “(7) as given by egs.

(152) to (154) become:
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E(;ﬁ((b,s) :('i‘) .E“sci
f fznds dd,p(s,)K ycos( - )-K sin($p -, )sinb (s,)]G(F-7,)

- o o .
) mm(ga¢ff‘ R @JKQ;GUr)]

- L2 2 [ [ db eI s $,)cos (s)

o

(155)
+L cos(p- d)o)cosﬁg(s) sin_ﬁg(so) -L tsinGg(s)cong(so)] G(F-7)

lp2n . .
- [Kg(s)—asl[ fo ds A p (s, )L cos(d-¢ )sind (5)sin6 (s,)

+L,c0s0,(s)cosO (5,)+Lysin($p -, )sin® (DIG(F-T,)

E(bs) =1 E™
= % fo 1 fo 2"d50d¢opg(so)[K¢Sin(¢‘Cbo)Sint(s)
*Kcos(d _d)")Sineg(s)Sineg(so) *+K cos eg(s)cose(so)]G(f' -F)
27: - . B
4Tt asff d(b [K d) G(r r) P (S )K 0 ( ro)]
k

+ i 2n _ (156)
4mp (s) a¢fofo ds dd p (5 )[Lysin(G-,)cosb,(s)

=~ L,sin6 (s) cosﬂg(soj +L cos(¢p-¢,)cosd (5)sinb (s )IG(F-F,)

ok cosﬁg(s)+ a
ps) on

- Lsin(¢p-¢,) sineg(so)]G(F 7))

[ dsdbps) Ly cos(®-6,)

St

|
where i

p is the normal derivative taken in the limit as 7 approaches the surface §* or §-
n

-
respectively from outside of S. It is evaluated as a limiting value in this report and should not

be confused with the Fourier index 7. From the duality principle, the tangential components
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of f7s** can be obtained by replacing fse* with g, g with 7, and J with _ g:

(692 f f“ds b 95 )L oc0s(d-,)~Lsin(d - )sind, (s JIGF-F,)
S [ d 1, %, 2 G-7) +p 6, L=-G-7,)

i 4np (s) 3%

+ Eg f [2ﬂds AAD,p,(5,) [Ky(,5,) sin(@-b,)cosd (s)

O

(157)
+K,COS(¢—¢o)cos6g(s)sin6g(so)— (&,5,)sin6 (s)cosB (s JIG(F-7,)

—K (s) -

4T

}[ [, p,(5 K cos($~,)sind (S)sind (5,)

+K rcosﬂg(s)cos@g(so) *K sin($ -, )sin® ()]G(F-7,)

H(d,s) = %kg fo : fo ds,d p (s )L +Sin(d=)sin6 (s)

+L cos(p-¢,)sin6 (5)sind g(so) +L cosO (8)cosO(s )IG(F-7,)

41'c asf f“ d(b [

- 4npg(s) % fo j;, angod¢opg(so)[K¢sin(¢—¢o)cosﬁg(s) (158)

- K,sinB (s) cosO,(s,) +K cos($-,) cosO (s)sinb (s,)IG(F-F,)

- = - =

*
4

cos0,(s) L0 '

Ipom -
pg(S) E;Z-LJ f;./;) ds"dcbopg(so) [Ky cos(®-9,)

- Ksin($ - §,)sin6 (s )IG(F-F,)

Because of the rotational symmetry of the scatterer, G(F-7,) = E e @70 G (p,z;p,2,).

Nn=-o

The Fourier expansions of egs. (156) and (157) are:
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n2

SO = L as K 0,606,406, ) - o O Ko
1,12 ) Jd
+ = f dsopg(so)[— sinf,(s,) (G,.,-G ( ) as GlK,

k 0
- Z f dsop (S ) COSe (S)(Gn+1 —1) L‘b,n

Kg(s) - = } f dsp(s,) sinﬁg(s) G,..7G,.) L,
(159)
+—]£if dsp(s,)[sin6, (s)cosB.(s,)G,

S cosG (5) sin@ (5)G,., +G, )IL,,

n+l

- g [K (5) - 5% Si}foldsop o(5,)[cosd (8)cosB.(s,)G,

1. .
+ 0 sin6 (s) sin@ (s )(G,., +G, DIL,,

n+l

K .
f ds,G,K, - — f ds,p (s,)sind,(5)(G,., -G, DK, ,

(S)[

1_8_
2 ds

+

k2
’7 folalsa p,(s,) [cong(s) c0s6,(s,) G,

1. .
+ Esme ,(8)sind (s )G,., +G, )] K,

k |cos Bg(s) 3
_ —e " 4+
41 p, (s) on
kncose (5

—'Tg(s—)_fo ()(Gn*l_Gq)L

ik |cos Gg(s) Kl
4 p (5 an

f p,(s,) [ c0s0,(s)sin0,(s ) (G,., +G,_,)
-sinQ (5) cosB [(s,) G 1L,

[ @5, 0,6s) Gps *+ G Ly, (160)

+

S*

}f ds, p (so) sinf (s NG, -G ) L,

+

29()
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Similarly, the Fourier expansions of eqs. (158) and (159) are:

G,1L,,

z a Gn] Ltn
g(s) ds,
zk 8

e fodsopg(so) cos8.(5)(G,,, -G, ) K,

sex, 01, k? . _n
HEO) = L a5 066)6,.,76,) pg(s)
n-1)

. _f ds pg(s) smG EORI(CAv

+£§[K()—

d [ (@5, sind(5) (G,.,-G,.) K,,
5] o (161)

- E = f ) ds p(s,)[sinB (s)cos B (s,)G,
1 .
—Ecosﬁg(s)smﬁg(so) (G,.,*G,_DIK,

s E e -

< } f ldsopg(so) [cosB,(s)cosb,(s,) G,

*G, D1 K

n+l

sc~ k2 .
H fdo n d>n— flds pa(S )Slneg(s)(Gnﬂ —Gn-l)ch,n

18
ew p()[—G]

. _;_ sinf _(s)sin6 (s )(G

L ik f ds, py(s,) [cosO (s)cosB(s,) G,

+ —sm@ ()sind (s J(G,., +G, D] L,

k [coseg(s) a
4| ) s

kncos@ (s)
+ — & G..-G )K
4py(s) f P50 Gy = ) Ky,

i [cos8() 3
—_— . - S [ A
4 p (s) on

- 2p() f p,(s,) [= cose ()sinb (s )(G,., +G, )

f ds, p(s,) (G,., + G, ) K,, (162)

5=

f ds, p(s,) sinb (s)G,., - G, ) K,
S*1

—sm@g(s) cosO (s,) G,1 K,
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